25 research outputs found

    EEG sleep stages identification based on weighted undirected complex networks

    Get PDF
    Sleep scoring is important in sleep research because any errors in the scoring of the patient's sleep electroencephalography (EEG) recordings can cause serious problems such as incorrect diagnosis, medication errors, and misinterpretations of patient's EEG recordings. The aim of this research is to develop a new automatic method for EEG sleep stages classification based on a statistical model and weighted brain networks. Methods each EEG segment is partitioned into a number of blocks using a sliding window technique. A set of statistical features are extracted from each block. As a result, a vector of features is obtained to represent each EEG segment. Then, the vector of features is mapped into a weighted undirected network. Different structural and spectral attributes of the networks are extracted and forwarded to a least square support vector machine (LS-SVM) classifier. At the same time the network's attributes are also thoroughly investigated. It is found that the network's characteristics vary with their sleep stages. Each sleep stage is best represented using the key features of their networks. Results In this paper, the proposed method is evaluated using two datasets acquired from different channels of EEG (Pz-Oz and C3-A2) according to the R&K and the AASM without pre-processing the original EEG data. The obtained results by the LS-SVM are compared with those by NaĂŻve, k-nearest and a multi-class-SVM. The proposed method is also compared with other benchmark sleep stages classification methods. The comparison results demonstrate that the proposed method has an advantage in scoring sleep stages based on single channel EEG signals. Conclusions An average accuracy of 96.74% is obtained with the C3-A2 channel according to the AASM standard, and 96% with the Pz-Oz channel based on the R&K standard

    Fuzzy and non-fuzzy approaches for digital image classification

    Get PDF
    This paper classifies different digital images using two types of clustering algorithms. The first type is the fuzzy clustering methods, while the second type considers the non-fuzzy methods. For the performance comparisons, we apply four clustering algorithms with two from the fuzzy type and the other two from the non-fuzzy (partitonal) clustering type. The automatic partitional clustering algorithm and the partitional k-means algorithm are chosen as the two examples of the non-fuzzy clustering techniques, while the automatic fuzzy algorithm and the fuzzy C-means clustering algorithm are taken as the examples of the fuzzy clustering techniques. The evaluation among the four algorithms are done by implementing these algorithms to three different types of image databases, based on the comparison criteria of: dataset size, cluster number, execution time and classification accuracy and k-cross validation. The experimental results demonstrate that the non-fuzzy algorithms have higher accuracies in compared to the fuzzy algorithms, especially when dealing with large data sizes and different types of images. Three types of image databases of human face images, handwritten digits and natural scenes are used for the performance evaluation

    Developing new techniques to analyse and classify EEG signals

    Get PDF
    A massive amount of biomedical time series data such as Electroencephalograph (EEG), electrocardiography (ECG), Electromyography (EMG) signals are recorded daily to monitor human performance and diagnose different brain diseases. Effectively and accurately analysing these biomedical records is considered a challenge for researchers. Developing new techniques to analyse and classify these signals can help manage, inspect and diagnose these signals. In this thesis novel methods are proposed for EEG signals classification and analysis based on complex networks, a statistical model and spectral graph wavelet transform. Different complex networks attributes were employed and studied in this thesis to investigate the main relationship between behaviours of EEG signals and changes in networks attributes. Three types of EEG signals were investigated and analysed; sleep stages, epileptic and anaesthesia. The obtained results demonstrated the effectiveness of the proposed methods for analysing these three EEG signals types. The methods developed were applied to score sleep stages EEG signals, and to analyse epileptic, as well as anaesthesia EEG signals. The outcomes of the project will help support experts in the relevant medical fields and decrease the cost of diagnosing brain diseases

    Robust approach for depth of anaesthesia assessment based on hybrid transform and statistical features

    Get PDF
    To develop an accurate and efficient depth of anaesthesia (DoA) assessment technique that could help anaesthesiologists to trace the patient’s anaesthetic state during surgery, a new automated DoA approach was proposed. It applied Wavelet-Fourier analysis (WFA) to extract the statistical characteristics from an anaesthetic EEG signal and to designed a new DoA index. In this proposed method, firstly, the wavelet transform was applied to a denoised EEG signal, and a Fast Fourier transform was then applied to the wavelet detail coefficient D3. Ten statistical features were extracted and analysed, and from these, five features were selected for designing a new index for the DoA assessment. Finally, a new DoA (WFADoA) was developed and compared with the most popular bispectral index (BIS) monitor. The results from the testing set showed that there were very high correlations between the WFADoA and the BIS index during the awake, light and deep anaesthetic stages. In the case of poor signal quality, the BIS index and the WFADoA were also tested, and the obtained results demonstrated that the WFADoA could indicate the DoA values, while the BIS failed to show valid outputs for those situations

    Classification of epileptic EEG signals based on simple random sampling and sequential feature selection

    Get PDF
    Electroencephalogram (EEG) signals are used broadly in the medical fields. The main applications of EEG signals are the diagnosis and treatment of diseases such as epilepsy, Alzheimer, sleep problems and so on. This paper presents a new method which extracts and selects features from multi-channel EEG signals. This research focuses on three main points. Firstly, simple random sampling (SRS) technique is used to extract features from the time domain of EEG signals. Secondly, the sequential feature selection (SFS) algorithm is applied to select the key features and to reduce the dimensionality of the data. Finally, the selected features are forwarded to a least square support vector machine (LS_SVM) classifier to classify the EEG signals. The LS_SVM classifier classified the features which are extracted and selected from the SRS and the SFS. The experimental results show that the method achieves 99.90, 99.80 and 100 % for classification accuracy, sensitivity and specificity, respectively

    Determinant of Covariance Matrix Model Coupled with AdaBoost Classification Algorithm for EEG Seizure Detection

    Get PDF
    Experts usually inspect electroencephalogram (EEG) recordings page-by-page in order to identify epileptic seizures, which leads to heavy workloads and is time consuming. However, the efficient extraction and effective selection of informative EEG features is crucial in assisting clinicians to diagnose epilepsy accurately. In this paper, a determinant of covariance matrix (Cov–Det) model is suggested for reducing EEG dimensionality. First, EEG signals are segmented into intervals using a sliding window technique. Then, Cov–Det is applied to each interval. To construct a features vector, a set of statistical features are extracted from each interval. To eliminate redundant features, the Kolmogorov–Smirnov (KST) and Mann–Whitney U (MWUT) tests are integrated, the extracted features ranked based on KST and MWUT metrics, and arithmetic operators are adopted to construe the most pertinent classified features for each pair in the EEG signal group. The selected features are then fed into the proposed AdaBoost Back-Propagation neural network (AB_BP_NN) to effectively classify EEG signals into seizure and free seizure segments. Finally, the AB_BP_NN is compared with several classical machine learning techniques; the results demonstrate that the proposed mode of AB_BP_NN provides insignificant false positive rates, simpler design, and robustness in classifying epileptic signals. Two datasets, the Bern–Barcelona and Bonn datasets, are used for performance evaluation. The proposed technique achieved an average accuracy of 100% and 98.86%, respectively, for the Bern–Barcelona and Bonn datasets, which is considered a noteworthy improvement compared to the current state-of-the-art methods

    An Eigenvalues-Based Covariance Matrix Bootstrap Model Integrated With Support Vector Machines for Multichannel EEG Signals Analysis

    Get PDF
    Identification of alcoholism is clinically important because of the way it affects the operation of the brain. Alcoholics are more vulnerable to health issues, such as immune disorders, high blood pressure, brain anomalies, and heart problems. These health issues are also a significant cost to national health systems. To help health professionals to diagnose the disease with a high rate of accuracy, there is an urgent need to create accurate and automated diagnosis systems capable of classifying human bio-signals. In this study, an automatic system, denoted as (CT-BS- Cov-Eig based FOA-F-SVM), has been proposed to detect the prevalence and health effects of alcoholism from multichannel electroencephalogram (EEG) signals. The EEG signals are segmented into small intervals, with each segment passed to a clustering technique-based bootstrap (CT-BS) for the selection of modeling samples. A covariance matrix method with its eigenvalues (Cov-Eig) is integrated with the CT-BS system and applied for useful feature extraction related to alcoholism. To select the most relevant features, a nonparametric approach is adopted, and to classify the extracted features, a radius-margin-based support vector machine (F-SVM) with a fruit fly optimization algorithm (FOA), (i.e., FOA-F-SVM) is utilized. To assess the performance of the proposed CT-BS model, different types of evaluation methods are employed, and the proposed model is compared with the state-of-the-art models to benchmark the overall effectiveness of the newly designed system for EEG signals. The results in this study show that the proposed CT-BS model is more effective than the other commonly used methods and yields a high accuracy rate of 99%. In comparison with the state-of-the-art algorithms tested on identical databases describing the capability of the newly proposed FOA-F-SVM method, the study ascertains the proposed model as a promising medical diagnostic tool with potential implementation in automated alcoholism detection systems used by clinicians and other health practitioners. The proposed model, adopted as an expert system where EEG data could be classified through advanced pattern recognition techniques, can assist neurologists and other health professionals in the accurate and reliable diagnosis and treatment decisions related to alcoholism

    Complex networks approach for EEG signal sleep stages classification

    No full text
    Sleep stage scoring is a challenging task. Most of existing sleep stage classification approaches rely on analysing electroencephalography (EEG) signals in time or frequency domain. A novel technique for EEG sleep stages classification is proposed in this paper. The statistical features and the similarities of complex networks are used to classify single channel EEG signals into six sleep stages. Firstly, each EEG segment of 30 s is divided into 75 sub-segments, and then different statistical features are extracted from each sub-segment. In this paper, feature extraction is important to reduce dimensionality of EEG data and the processing time in classification stage. Secondly, each vector of the extracted features, which represents one EEG segment, is transferred into a complex network. Thirdly, the similarity properties of the com- plex networks are extracted and classified into one of the six sleep stages using a k-means classifier. For further investigation, in the statistical features extraction phase two statistical features sets are tested and ranked based on the performance of the complex networks. To investigate the classification ability of complex networks combined with k-means, the extracted statistical features were also forwarded to a k-means and a support vector machine (SVM) for comparison. We also compare the proposed method with other existing methods in the literature. The experimental results show that the proposed method attains better classification results and a reasonable execution time compared with the SVM, k-means and the other existing methods. The research results in this paper indicate that the proposed method can assist neurologists and sleep specialists in diagnosing and monitoring sleep disorders

    Classify epileptic EEG signals using weighted complex networks based community structure detection

    No full text
    Background: Epilepsy is a brain disorder that is mainly diagnosed by neurologists based on electroencephalogram (EEG) recordings. Epileptic EEG signals are recorded as multichannel signals. A reliable technique for analysing multi-channel EEG signals is in urgent demand for the treatment and diagnosis of patients who have epilepsy and other brain disorders. Method: In this paper, each single EEG channel is partitioned into four segments, with each segment is further divided into small clusters. A set of statistical features are extracted from each cluster. As a result, a vector of all the features from each EEG single channel is obtained. The resulting features vector is then mapped into an undirected weighted network. The modularity of the networks is found to be the best to detect epileptic seizures in EEG signals. Other local and global network features, including clustering coefficients, average degree and closeness centrality, are also extracted and studied. All the network attributes are ranked based on their potential to detect abnormalities in EEG signals. Results: Eight pairs of combinations of EEG signals are classified by the proposed method using four well known classifiers: a least support vector machine, k-means, NaĂŻve Bayes, and K-nearest. The proposed method achieved an average of 98%, 96.5%, 99%, rand 0.012, respectively, for its accuracy, sensitivity, specificity and the false positive rate. Comparisons were made using several existing epileptic seizures detection methods using the same datasets. The obtained results showed that the proposed method was efficient in detecting epileptic seizures in EEG signals

    EEG sleep stages classification based on time domain features and structural graph similarity

    No full text
    Abstract-The electroencephalogram (EEG) signals are commonly used in diagnosing and treating sleep disorders. Many existing methods for sleep stages classification mainly depend on the analysis of EEG signals in time or frequency domain to obtain a high accuracy of classification. In this paper, a novel method is proposed, which uses the statistical features in time domain and the structural graph similarity combined with k-means (SGSKM) to identify six sleep stages using a single channel EEG signals. Firstly, each EEG segment is partitioned into sub-segments. The size of a sub-segment is determined empirically. Secondly, statistical features are extracted and different sets of features are forwarded to the SGSKM to classify EEG sleep stages. We have also investigated the relation between sleep stages and the time domain features of the EEG data. The experimental results show that the proposed method yields better classification results compared to other four existing methods and the support vector machine (SVM) classifier. A 95.93% average classification accuracy is achieved by the proposed method
    corecore